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Abstract
We have studied second-harmonic generation (SHG) from quasi-one-
dimensional aperiodic optical superlattices (AOSs) of finite lateral width by
inverting poled ferroelectric domains. The search for optimal AOS structures
corresponds with solving a difficult inverse source problem. We describe the
design principle in real-space representation and undertake model designs.
The numerical simulations show that the constructed AOSs can implement
multiple-wavelength SHG with identical effective nonlinear coefficients at the
pre-assigned wavelengths of the incident light. We investigate the effects of
mode–mode coupling and the lateral width of the superlattice on the SHG for
two cases: incident light beams of plane-wave and Gaussian profiles. When
the number of modes increases, the effective nonlinear coefficient decreases
in an oscillatory fashion at the beginning and then tends to a constant. For an
incident plane-wave beam, the dependence of the effective nonlinear coefficient
on the width of the sample is quite weak, while for an incident Gaussian beam
this dependence exhibits a rapid decrease at the beginning and then tends to
a constant. We display the variation in the effective nonlinear coefficients
with the distance of propagation of the optical wave from where the incident
light beam impinges on the sample surface and find that this variation exhibits
monotonically increasing behaviour. This clearly infers that the contribution of
every block to the optical SHG process takes the form of constructive addition.
It is expected that this new design method may provide an effective and useful
technique for constructing nonlinear optical material to match various practical
applications.
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1. Introduction

It is of importance to find laser sources at new wavelengths, and this can be achieved
by nonlinear optical processes. The conventional method requires a phase-matching (PM)
condition to obtain high conversion efficiency [1, 2]. However, the PM condition imposes
a great restriction on the choice of the natural birefringent material. Another scheme is so-
called quasi-phase matching (QPM) [3, 4]. This method can significantly diversify the class of
nonlinear optical materials [5–13]. Some researchers successfully accomplished the design of
an aperiodic optical superlattice (AOS) for multiple-wavelength second-harmonic generation
(SHG) [14, 15]. The result of their design was recently confirmed by experiment [16].
However, previous studies were restricted only to one-dimensional AOS with an infinite lateral
width [6, 14, 15]. In practical applications, the superlattice always possesses a finite lateral
width. This situation usually occurs, as a high input power is adopted and the beam size is
extended to avoid possible optical damage to the nonlinear crystal. Therefore, the effects of the
finite lateral width of the AOS and the mode–mode coupling on the SHG could be interesting
and important.

Motivated by the above work, in this paper we study the properties of SHG in an AOS
with a finite lateral width, which can be fabricated by inverting poled ferroelectric domains.
We first present the optimal design method for constructing the AOS. Then we carry out the
specific design of an AOS that can implement multiple-wavelength SHG with identical effective
nonlinear coefficients. In previous work, to guarantee the validity of the one dimensionality of
the sample considered, it required that the size of the incident beam should be small compared
to the lateral width of the sample. Therefore, an entrance aperture needs to be introduced. As
a result, the energy of the incident light is cut off substantially. This leads to a lower SHG
output power. If removing this limit on the aperture means that the SHG output is increased
substantially, then it is favourable for practical applications. On the other hand, multiple-
wavelength SHG with identical nonlinear coefficients in a single sample is very useful for
serving as the light source of a colour display. Just one sample is then needed and the complex
attenuator system can be avoided. We study the effects of the mode–mode coupling and
the width of the superlattice on the SHG for two cases: incident light beams of plane-wave
profile and Gaussian profile. We find that the effective nonlinear coefficient is decreased in an
oscillatory fashion with an increase in the number of modes at the beginning, then tends to a
constant. For an incident plane-wave beam, the effective nonlinear coefficient exhibits a weak
dependence on width. However, for a Gaussian-profile incident beam, this dependence shows
a rapid decrease at the beginning and then tends to a constant. We also display the contribution
of each unit block of the sample to the SHG. This variation displays monotonically increasing
behaviour. This clearly infers that the contribution of each block of the sample to the optical
SHG process takes the form of constructive addition.

This paper is organized as follows. In section 2, we describe the design method and the
formulas needed for the calculations. The calculated results are presented in section 3, together
with analysis. Finally, a brief summary is given in section 4.

2. Theoretical formulas and design method

2.1. Formulas: effective nonlinear coefficient

The schematic configuration of the sample structure, which is surrounded by air, is shown
in figure 1. The AOS with finite lateral width W is composed of laminar ferroelectric
domains. The thickness of an individual domain can be different and is determined by special
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Figure 1. A schematic of the model structure of an AOS with finite lateral width. The structure
is surrounded by air and the superlattice is composed of alternating laminar domains with positive
polarization (black blocks) and negative polarization (white blocks) along the z axis. The incident
plane wave is parallel to the xy plane and impinges on the sample perpendicularly. The size of the
sample in the third direction is infinite and the related field component is of translational invariance.

optical parametric processes. This AOS has a quasi-one-dimensional (Q1D) modulation in
the nonlinear coefficient along the direction normal to the domain layers. In order to use the
largest nonlinear coefficient, d33, of LiTaO3 (LT) crystal, let the interfaces of the domains be
parallel to the yz plane and the directions of propagation and polarization of the incident light
be along the x and z axes, respectively. The size of the sample in the third direction (the
z axis) is infinite with translational invariance.

We first discuss the SHG process for the case of a single wavelength. It is assumed that
there is a laser beam with ω1 = ω incident normally from the left-hand side of the sample
onto the surface of an AOS and that, through a nonlinear optical process, the second-harmonic
wave (SHW) is generated. The AOS sample is illuminated fully by the fundamental wave
(FW) in the lateral direction of the sample. The modulation of the nonlinear optical coefficient
d33 in the AOS is described by χ(x) = χ j (y ∈ [−W/2, W/2]) in the j th unit block for
x j−1 � x � x j , and χ j takes only a binary value, d33 and −d33, corresponding to the positive
and negative polarizations. We assume that x0 = 0 and xN = L = N�x , where L denotes
the thickness of the AOS sample, N is the number of the unit blocks in the sample, and �x
denotes the thickness of each individual unit block.

When considering the translational invariance of the sample along the z direction and the
approximation of negligible pump power depletion, the electric field E1ω(x, y) of the FW and
the electric field E2ω(x, y) of the SHW in the quasi-1D AOS satisfy the following homogeneous
or inhomogeneous wave equation [2]:

(
d2

dx2
+

d2

dy2

)
E1ω(x, y) + k2

1ω E1ω(x, y) = 0, (1)
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(
d2

dx2
+

d2

dy2

)
E2ω(x, y) + k2

2ω E2ω(x, y) = −k2
20χ(x)E2

1ω(x, y), (2)

χ(x) = |d33|d̃(x), (3)

where d̃(x) only takes a binary value of 1 or −1. Outside the sample, i.e. in air, the fields of
the FW (E1g) and SHG (E2g) satisfy the following equations:

(
d2

dx2
+

d2

dy2

)
E1g(x, y) + k2

10 E1g(x, y) = 0, (4)

(
d2

dx2
+

d2

dy2

)
E2g(x, y) + k2

20 E2g(x, y) = 0. (5)

The boundary conditions are:

E1ω

(
x, y = ± W

2

)
= E1g

(
x, y = ± W

2

)
,

∂ E1ω

∂y

(
x, y = ± W

2

)
= ∂ E1g

∂y

(
x, y = ± W

2

)
,

E2ω

(
x, y = ± W

2

)
= E2g

(
x, y = ± W

2

)
,

∂ E2ω

∂y

(
x, y = ± W

2

)
= ∂ E2g

∂y

(
x, y = ± W

2

)
.

(6)

Here k10 = ω/c(k20 = 2ω/c) and k1ω = n1ωω/c (k2ω = n2ωk20), c is the light speed in
vacuum, and n1ω = n(ω) (n2ω = n(2ω)) is the refractive index of the material at the FW
(SHW) frequency.

For the FW field, there are two types of mode. One is the guide mode, which is confined
in the interior of the sample, and the other is the radiation mode. We only focus on the
contribution of the guide mode to the SHG, because the energy of the radiation mode in the
AOS is quite weak. To solve equation (1), we expand E1ω(x, y) approximately in terms of
transverse eigenmodes (see appendix):

φ1n(y) = ρ1n cos

[
κ1n

(
y +

W

2

)
− tg−1

(
β1n

κ1n

)]

which satisfy the boundary conditions (6) as

E1ω(x, y) = 	naneip1n xφ1n(y), (7)

where

ρ1n =
√√√√ 2

W + sin[2tg−1(β1n/κ1n)]
κ1n

+
2 cos2[tg−1(β1n/κ1n)]

β1n
,

p2
1n = k2

1ω −κ2
1n, β2

1n = p2
1n −k2

10, an is a constant expansion coefficient, and κ1n and β1n satisfy
the following equation: κ1n = 1

W [nπ + 2tg−1(β1n/κ1n)]. The solution of the inhomogeneous
equation (2) can then be expressed in general as

E2ω(x, y) = 	nbn(x)eip2n xφ2n(y), (8)

where p2n, φ2n(y) and κ2n have similar forms of expression to p1n, φ1n(y) and κ1n.
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Substituting these formal solutions of equations (7) and (8) into (2) and considering the
orthogonality and completeness of φ2n(y) in the region [−W/2, W/2], we obtain

d2bs (x)

dx2
+ 2ip2s

dbs (x)

dx
= −k2

20|d33|d̃(x)	l,malamei(p1l +p1m−p2s )x

×
∫ W/2

−W/2
dyφ1l (y)φ1m(y)φ2s(y). (9)

Assuming a slowly varying amplitude of the SHW fields, i.e. d2bs (x)/dx2<2ip2sdbs (x)/dx ,
we can thus derive

dbs (x)

dx
= ik2

20|d33|d̃(x)

2 p2s

√
W

∑
l,m

Glmsalamei(p1l +p1m−p2s )x . (10)

Thus, its solution is

bs(x) = ik2
20|d33|L

2 p2s

√
W

∑
l,m

Glmsalam Flms (x), (11)

where

Flms (x) = 1

L

∫ x

0
dζ d̃(ζ )ei(p1l+p1m−p2s )ζ ,

and Glms is evaluated by

Glms = √
W

∫ W/2

−W/2
dy φ2s (y)φ1m(y)φ1l(y) = 1

4 W 3/2ρ1mρ1lρ2s
{
sinc [(κ1l + κ1m + κ2s)W/2]

+ sinc [(κ1l + κ1m − κ2s)W/2] + sinc [(κ1l − κ1m + κ2s)W/2]

+ sinc [(κ1l − κ1m − κ2s)W/2]
}
, (12)

where sinc (y) = sin(y)/y. Substituting equation (11) into (8), we can calculate the SHW
field at the right-hand exit of the sample:

E2ω(x = L, y) =
∑
l,m,s

ik2
20|d33|L

2 p2s

√
W

Glms alameip2s Lφ2s(y)Flms (L). (13)

As discussed above, the distribution of fields in the z direction is uniform with the
translational invariance. Therefore, we can take into account the light beam with a cross
section of S = W × h. Then, according to the definition of the intensity being the field energy
density per unit area, the intensities of the SHW and FW are given by [2]

I2ω = P2ω/S =
[

1

2Wh

√
ε2ω

µ

∫ h

0
dz

∫ +W/2

−W/2
dy |E2ω(x = L, y)|2

]
= 1

2W

√
ε2ω

µ
	n|bn(L)|2,

(14)

I1ω = P1ω/S =
[

1

2Wh

√
ε1ω

µ

∫ h

0
dz

∫ +W/2

−W/2
dy |E1ω(x = 0, y)|2

]
= 1

2W

√
ε1ω

µ
	n|an|2, (15)

where ε1ω,2ω = ε0n2
1ω,2ω and ε0 is the permittivity of vacuum. Here we assume that the

detector of the SHG is immediately attached to the exit of the sample. Finally, we can derive
the conversion efficiency from the incident wave to the SHW as

ηSH G = 8π2|d33|2 L2

cε0λ2n2ωn2
1ω

I1ω

∑
n,l1,l2 ,m1,m2

k2
2ω

p2
2n

Al1 A∗
l2 Am1 A∗

m2
Gl1m1n Gl2m2n Fl1m1n(L)F∗

l2 m2n(L), (16)

where An = an/
√∑

m |am|2. It is evident that |A|2n represents the relative weight of the
nth-mode intensity in the FW.
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For convenience, equation (16) can be rewritten as

ηSH G = Cs Q2(λ)ξ
(s)
e f f (λ) (17)

with

Cs = 8π2|d33|2 I1ω L2

cε0
(18)

and

Q(λ) = 1

λ
√

n2ωn1ω

, (19)

ξ
(s)
e f f (λ) =

∑
n,l1,l2,m1,m2

(
k2

2ω

p2
2n

)
Al1 A∗

l2
Am1 A∗

m2
Gl1m1n Gl2m2n Fl1m1n(L)F∗

l2 m2n(L). (20)

The total intensity of SHW at x = L is

ISH G = 0.5
√

ε2ω

µ
	n|bn(L)|2 = WηSH G I1ω = Cs Q2(λ)I1ω[Wξ

(s)
e f f (λ)] = RSH W I1ω,

RSH W = ISH W /I1ω = WCs Q2(λ)ξ
(s)
e f f (λ),

(21)

where, in principle, n, l1, l2, m1, m2 can take any integer number from 0 to ∞, but in practice
they should be truncated to some finite values, according to the particular pattern of the incident
FW field. Note that ξ

(s)
e f f (λ) represents the reduced effective nonlinear coefficient per area of

sample for SHG and RSH W expresses the ratio of the total SHW intensity to the FW one at the
exit of sample.

The modes of the FW field depend strongly on the pattern of the incident light wave. As
an example, we assume that a plane wave with E = exp(ikx) (y ∈ [−W/2, W/2]) is incident
normal to the surface of the sample. Its expansion coefficient can be evaluated as

eikx |x=0 =
∑

n

aneip1n xφ1n(y)|x=0,

therefore we obtain

an =
∫ W/2

−W/2
dy φ1n(y) = 2ρ1n

κ1n
sin

(
κ1n W

2

)
.

The nth mode weight of FW field is given by

An = 2ρ1n sin(κ1nW/2)

κ1n

√
W

, (22)

where An has non-zero value only when n = 0, 2, 4, 6, . . ..
For convenience, we define Nc (an even number) as the maximum mode index, i.e. taking

l1, l2, m1, m2 = 0, 2, 4, 6 . . . Nc into account in the summation in equation (20), the
contribution of the higher index modes can be negligible.

We now turn to discussing the more real experimental case when the incident light beam
has the Gaussian profile E = e−y2/σ 2

exp(ikx). The nth mode amplitude of the FW fields is
given by

An = ρ1n

∫ W/2

−W/2
dy e−y2/σ 2

φ1n(y)

/∫ W/2

−W/2
dy e−2y2/σ 2

. (23)

We can then derive an expression, analogous to equation (20), for the effective nonlinear
coefficient of the SHG:

ξ
(s)′
e f f (λ) = σ

W
ξ

(s)
e f f (λ). (24)
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2.2. Design method: simulation annealing approach

We now discuss the inverse source problem in constructing the optical AOS. It is assumed that
the thickness of the unit block is �x , thus the number of blocks in the sample is N = L/�x .
The position of each block is designated by xq = q�x , where q = 0, 1, 2, 3 . . . (N − 1). We
can then easily evaluate the integral equation (20):

ξ
(s)
e f f (λ) =

∑
n,l1,l2,m1,m2

(
k2

2ω

p2
2n

)
Al1 A∗

l2 Am1 A∗
m2

× {
Gl1m1n

L

N�x
	N−1

q1=0d̃(xq1)[Fl1m1n(xq1+1) − Fl1 m1n(xq1)]
}

× {
Gl2m2n

L

N�x
	N−1

q2=0d̃(xq2)[F∗
l2m2n(xq2+1) − F∗

l2m2n(xq2)]
}

=
∑

n,l1,l2 ,m1,m2

(
k2

2ω

p2
2n

)
Al1 A∗

l2
Am1 A∗

m2

{
Gl1m1nsinc [(p1l1 + p1m1 − p2n)�x/2]

}

×
{

1

N

N−1∑
q1=0

d̃(xq1) exp[i(p1l1 + p1m1 − p2n)(q1 + 0.5)�x]

}

× {
Gl2m2nsinc [(p1l2 + p1m2 − p2n)�x/2]

}

×
{

1

N

N−1∑
q2=0

d̃(xq2) exp[−i(p1l2 + p1m2 − p2n)(q2 + 0.5)�x]

}
. (25)

It is clearly seen that ξ
(s)
e f f (λ) is governed by three factors:

(i) First, the factor
∑

l,m Al Am Glmn reflects the coupling between the transverse modes of
the FW. The finite width of the superlattice leads to a non-uniform distribution of both
the FW and SHW fields in the lateral direction of the sample. The coupling between the
transverse modes of the FW can generate a large amount of SHW transverse modes. From
the numerical simulation of the term

∑
l,m Al Am Glmn , it is found that, if the mode index

of the SHW is high enough, the contribution of these higher-index modes to ξ
(s)
e f f (λ) is

quite small. Thus, only the transverse modes of the SHW with lower index bring a major
contribution to ξ

(s)
e f f (λ).

(ii) The second factor is a sinc function, such as sinc [(p1l + p1m − p2n)�x/2]. This is
associated closely with the unit block in the sample and depends strongly on �x as well
as the coherence length ls

c(λ) [ls
c(λ) = 2π/�k = 2π/(p2n − p1m − p1l)].

(iii) The third factor, (1/N)
∑N−1

q=0 (−1)q exp[i(p1l + p1m − p2n)(q + 0.5)�x], reflects the
interference of the generating wave from the individual block and depends on the
configuration of domains and the phase lag of the generating wave from the individual
block of the sample.

The optimal design of the AOS for SHG can be described as a search for the maximum of
ξ

(s)
e f f (λ) with respect to d̃(q�x). Taking the second factor into consideration, the maximum-

value condition demands �x = [(2m + 1)/2]ls
c(λ), where m = 0, 1, 2, . . . , and the maximum

value of this factor is 2/[π(2m + 1)]. The maximum-value condition for the second factor
corresponds to perfectly constructive interference. For the case of a periodic structure with a
period of a = 2�x , d̃(xq) just takes the value of d̃(q�x) = (−1)q for q = 0, 1, 2 . . . (N − 1).
We thus obtain

1

N

N−1∑
q=0

(−1)q exp[i(p1l + p1m − p2n)(q + 0.5)�x] = 1. (26)
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However, for an optical superlattice of finite lateral width, the above condition cannot
be satisfied exactly due to the existence of multiple modes for both FW and SHW. It is
noted that only the lower index modes of the SHW or FW provide major contributions, as
addressed before. In an ideal case, the phase-lagging factor perfectly matches the reversal
of the orientation between two adjacent blocks and perfect constructive interference occurs.
However, in the case of the AOS, the situation becomes much more complicated and an
inverse source problem must be solved. Such an optimal nonlinear problem can be solved by
using the simulated annealing (SA) method [17, 18] in which an objective function D should
be minimized, and then a favourable orientation of each domain layer in the sample can be
determined completely.

To demonstrate the effectiveness and usefulness of the SA method in dealing with the
inverse source problem, we consider the case of a single-wavelength SHG to verify the SA
method available. To be compatible with generality, we consider the case of multiple modes,
Nc = 10, in the SA algorithm. We choose the parameters to be: the wavelength of the incident
beam λ = 1.06 µm; the width of the superlattice W = 1.0 mm; the thickness of the unit
block �x = l(s)c /2 = π/(k2ω − 2kω) = 3.8713 µm; and the number of blocks 103. Thus, the
total thickness of the sample is L = 3.871 mm. The refractive index of the material at the
FW (SHW) frequency is evaluated using the Sellmeier equation given in [8]. The objective
function used in the SA is chosen to be

D = |ξ0 − ξ
(s)
e f f (λ)|, (27)

where ξ0 is a pre-designated value in guiding the SA procedure and ξ
(s)
e f f (λ) is given in

equation (20). Finally, we obtain a perfect periodic structure with a period of a = 2�x =
l(s)c (λ), as expected. The reduced effective nonlinear coefficient of ξ

(s)
e f f (λ) is 0.4322. The

results that are obtained strongly support the SA method as being appropriate for dealing with
the above-mentioned inverse source problem.

3. Results and analysis

We now undertake a specific design of the AOS that accomplishes multiple-wavelength SHG
with an identical effective nonlinear coefficient ξ

(s)
e f f (λ) = ξ (0). First, we have to choose

carefully an appropriate thickness �x of the unit block, which is mainly determined from
the maximum value of the sinc function sinc [(p1l + p1m − p2n)�x/2]. This factor depends
strongly on wavelength. As is well known, sinc (x) ∼ 1 when x is small enough, thus this
wavelength dependence can be negligible. Therefore, we choose �x = 3 µm for compatibility
with state-of-the-art micro-fabrication. The objective function used in the SA method is now
chosen to be

D = 	α[|ξ (0) − ξ
(s)
e f f (λα)|] + γ [max{ξ (s)

e f f (λα)} − min{ξ (s)
e f f (λα)}], (28)

where the symbol max{· · ·}(min{· · ·}) means taking the maximum (minimum) value among
all the quantities included in {· · ·}, γ is an adjustable parameter that takes a value of 0.3–3.0,
and λα is set to the values 0.9720, 1.0820, 1.2830, 13940 and 1.5687 µm. The dispersion
relation of the refractive indices of the LT crystal at the FW and SHW frequencies is calculated
at T = 25 ◦C according to the Sellmeier formula given in [8].

We calculate the effective nonlinear coefficient for the cases of a single mode and
multiple modes of the incident FW beam with a plane-wave profile. As the parameters in
the calculations, we adopt a total thickness of sample L = 3.0 mm, the number of blocks
N = 103, and the superlattice width W = 1.0 mm. Figure 2(a) shows a grey-scale diagram
of the constructed AOS in part for the case of multiple modes of Nc = 10. The black (white)
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Figure 2. The characteristics of the constructed AOS that can implement multiple-wavelengths
SHG with identical nonlinear coefficients. The number of modes of the incident FW field involved
in the optical design of the AOS is Nc = 10. (a) A grey-scale diagram representing the domain
orientation of the specific AOS in part (black blocks correspond to positive polarization; white
blocks to negative polarization). (b) The wavelength dependence of ξ

(s)
e f f (λ).

strip represents the positive (negative) polarization domain. Figure 2(b) displays the calculated
reduced effective nonlinear coefficient in the case of Nc = 10 as a function of wavelength of
the FW. After scanning a wide range of wavelengths from 0.85 to 1.65 µm with a resolution
of 0.5 Å, it exhibits peaks of almost identical height at the pre-assigned wavelengths. It is also
seen that one unexpected peak of λ = 0.980 95 µm appears near the pre-set wavelength of
λ = 0.972 00 µm.

Table 1 shows the calculated effective nonlinear coefficient at the five pre-assigned
wavelengths of the FW for the cases Nc = 0, 2, 4, 6 and 8. It is evident that, for the case
of Nc = 0, the average value of ξ

(s)
e f f (λα) is 0.049 32 and the non-uniformity defined by

�ξ
(s)
e f f = (1/α)[

∑
α |ξ (s)

e f f (λα) − 〈ξ (s)
e f f 〉|/〈ξ (s)

e f f 〉] equals 0.203%. Also, for Nc = 2 (4, 6 and

8), the average value of ξ
(s)
e f f (λα) is 0.042 86 (0.042 68, 0.041 59 and 0.039 99), and the non-

uniformity is 0.0653 (0.276, 0.303 and 0.245%).
Figure 3 displays the variations in the calculated effective nonlinear coefficient at the

pre-assigned five wavelengths of the FW with Nc for values of several W . The widths of the
superlattice are 1.0, 2.0 and 2.5 mm. It is clear that the 〈ξ (s)

e f f 〉 is basically decreased containing
some oscillations when increasing the number of transverse modes of FW.
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Figure 3. The variation of 〈ξ(s)
e f f 〉 with the number of modes of the FW for several widths of the

AOS sample, W = 1.0, 2.0 and 2.5 mm, for the case of a plane-wave incident beam. Nc is the
maximum mode index of the FW field.

Table 1. The effective nonlinear coefficient ξ
(s)
e f f (λ) at the five pre-assigned wavelengths of the FW

for the cases Nc = 0, 2, 4, 6 and 8 (W = 1.0 mm).

λ (µm) ξ
(s)
e f f (λ)(Nc = 0) ξ

(s)
e f f (λ)(Nc = 2) ξ

(s)
e f f (λ)(Nc = 4) ξ

(s)
e f f (λ)(Nc = 6) ξ

(s)
e f f (λ)(Nc = 8)

0.9720 0.049 28 0.042 86 0.042 62 0.041 58 0.039 75
1.0820 0.049 20 0.042 91 0.042 61 0.041 77 0.040 06
1.2830 0.049 22 0.042 84 0.042 59 0.041 72 0.040 15
1.3940 0.049 38 0.042 87 0.042 81 0.041 43 0.040 03
1.5687 0.049 50 0.042 80 0.042 92 0.041 44 0.040 00

ξ
(s)
e f f (λα) depends strongly on the field distribution of FW. The interference effect between

the modes may change the distribution of the field. From equation (22), the following results
can be deduced from the numerical simulation:

(i) The phase of the contribution from the two connective modes is inverse. This leads
to the result that the variation of the intensity of FW with Nc is not always decreasing
monotonically.

(ii) The higher-index modes correspond to nonzero small components of the FW, so the
decrease in ξ

(s)
e f f (λα) with Nc cannot approach zero but rather a finite value, as seen in

figure 3.

It is interesting to show the effect of the width of the superlattice on the SHG. It is seen
clearly from figure 3 that the change in 〈ξ (s)

e f f 〉 for different widthes of the sample is quite small,
even if W → ∞. These results can be well understood: as the incident energy per area of
the FW retains a fixed value, the variation in 〈ξ (s)

e f f 〉 with width is weak. In contrast, RSH W is
the ratio of the total SHW intensity to the FW one at the exit of the sample, so it is roughly
proportional to the width of sample, as expected.

It is worth pointing out that, for the one-dimensional AOS sample of infinite width, to
avoid the boundary effect the width of the incident light beam must be small compared to the
lateral width of the sample. Thus the SHW’s total energy becomes relatively low due to the
limited width of the incident light beam.

To further reveal the characteristics of SHG in the constructed AOS, figure 4 displays the
variation in ξ

(s)
e f f (λ) with the distance of propagation of the optical wave, x , from where the

incident light beam impinges on the sample surface for the five pre-assigned wavelengths of the
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Figure 4. The variation in ξ
(s)
e f f (λ) with the propagating distance of the incident optical wave in

the AOS sample in figure 2 for five pre-assigned wavelengths of the FW.
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Figure 5. As for figure 3, except that the incident light beam is of Gaussian profile.

FW. It is apparent that all the curves exhibit increasing behaviour as well as an almost identical
rising slope. This implies that the orientation of domains is quite favourable to the SHG
process, because the contribution of successive blocks to ξ

(s)
e f f (λ) is constructive accumulation.

We now consider the more real experimental case: an incident light beam of Gaussian
profile of E = e−y2/σ 2

exp(ikx). Figure 5 shows the dependence of the effective nonlinear
coefficient at the pre-assigned wavelengths of the FW: Nc , for several different widths of the
sample, W = 0.5, 1.0, 1.5 and 2.5 mm. The other parameters are as follows: �x = 3 µm;
L = 3.0 mm; N = 103; and σ = 1.0 mm. The behaviour is similar to figure 3. However,
for a given Nc, as increasing W , 〈ξ (s)

e f f 〉 is decreased rapidly at the beginning and then tends
to a constant. These results can be interpreted well: for the Gaussian profile beam, the light
energy is focused mostly within the range of σ . When the width W of the sample is smaller
than σ = 1.0 mm, for example W = 0.5 mm, the average intensity of the incident FW beam
that is involved in the SHG process is relatively large at the entry of the sample. Thus the
corresponding plateau value of 〈ξ (s)

e f f 〉 should be large. However, when increasing the width of
the sample, the average intensity of the incident FW beam is decreased accordingly. Thus the
plateau value of the 〈ξ (s)

e f f 〉 is reduced. However, when W > σ , the intensity of the incident
FW beam almost retains a small change with W because most of the energy of the incident
FW beam is focused within the range of σ . As a result, the variation in the plateau value of
〈ξ (s)

e f f 〉 with W now becomes quite weak, as shown by the curves corresponding to W = 1.5
and 2.5 mm in figure 5.
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4. Summary

We have investigated the characteristics of SHG from an AOS with finite lateral width, as is
necessary for extending incident light beams to avoid possible damage to a nonlinear crystal
when high input power is adopted. The optimal design of the AOS for SHG corresponds to
a difficult inverse problem in nonlinear optics. To deal with this problem we employ the SA
method. We describe the idea of the design and carry out the model designs. For example,
the constructed AOS can achieve multiple-wavelength SHG with identical effective nonlinear
coefficients at the pre-assigned multiple wavelengths. We study the effects of mode–mode
coupling between the transverse modes of the FW and SHW and the lateral width of the
sample on ξ

(s)
e f f (λ) for both cases of incident light beams of plane-wave and Gaussian profile.

ξ
(s)
e f f (λ) is decreased with an increase in the number of transverse modes. ξ

(s)
e f f (λ) is

insensitive to the change of the width W of the AOS sample for the incident plane-wave beam,
However, for the incident Gaussian profile beam, the W dependence of ξ

(s)
e f f (λ) exhibits rapidly

decreasing behaviour at the beginning and then tends to a constant. We also show the variation
of the effective nonlinear optical coefficient with the distance of propagation of the optical
wave from where the incident light beam impinges on the sample surface, and we find that
it displays monotonically increasing behaviour. This clearly confirms that the contribution
of every individual block in the sample to the optical parametric process is a constructive
accumulation. We believe that our proposed design method may provide an instructive and
useful method for making new nonlinear optical materials compatible with various practical
applications.

Acknowledgments

This work was supported by the Chinese National Key Basic Research Special Fund and by
the Natural Science Foundation of Beijing, China.

Appendix

In this appendix, we provide a detailed derivation of the transverse eigenmodes of the FW in
the AOS sample of finite width.

The electric field E1ω(x, y) of the FW satisfies the following wave equations:

(
d2

dx2
+

d2

dy2

)
E1ω(x, y) + k2

1ω E1ω(x, y) = 0, inside the AOS (A.1)

(
d2

dx2
+

d2

dy2

)
E1g(x, y) + k2

10 E1g(x, y) = 0, in air. (A.2)

The boundary conditions are

E1ω

(
x, y = ± W

2

)
= E1g

(
x, y = ± W

2

)
,

∂ E1ω

∂y

(
x, y = ± W

2

)
= ∂ E1g

∂y

(
x, y = ± W

2

)
.

(A.3)

Here k10 = ω/c and k1ω = n1ωω/c, where c is the light speed in vacuum and n1ω = n(ω) is
the refractive index of the material at the FW frequency.

There are two cases in solving equations (A.1) and (A.2):

(i) k2
10 < p2

1n < k2
1ω (corresponding to the guide wave), (A.4a)



SHG and multiple mode effects in AOSs with finite lateral width 4901

(i i) p2
1n < k2

10 (corresponding to the radiation wave), (A.4b)

where p1n represents the wavevector of the FW along the x axis. We define p2
1n = k2

1ω − κ2
1n

and β2
1n = p2

1n − k2
10 for the guide waves and β2

1n = k2
10 − p2

1n for the radiation waves.
The formal solution of equation (A.1) can be written as

E1ω(x, y) = [ f1 cos(κ1n y) + f2 sin(κ1n y)]eip1n x . (A.5)

For the case of the guide modes, we assume the formal solution to equation (A.2) to be

E1g(x, y) =




g1 exp

[
β1n

(
y − W

2

)]
eiτ x, y � −W/2,

g2 exp

[
−β1n

(
y +

W

2

)]
eiτ x , y � W/2.

(A.6)

After imposing the boundary conditions and through the standard tedious manipulations, we
can obtain the related transverse eigenmodes of the FW. The field distribution of the FW
possesses even or odd symmetry, due to the symmetry of the sample structure.

For the even symmetric solution, we obtain a set of bases that satisfy orthogonality and
completeness, i.e.

ϕ1n(y) =




f1 cos(κ1n y), y ∈ [−W/2, W/2],

g1 exp

[
−β1n

(
y +

W

2

)]
, y ∈ [W/2,∞],

g1 exp

[
β1n

(
y − W

2

)]
, y ∈ [−∞,−W/2]

where f1 = √
2
[
W + sin(κ1n W )

κ1n
+ 2 cos2(κ1n W/2)

β1n

]− 1
2 , as determined by the normalized condition;

g1 = f1 cos(κ1nW/2)eβ1n W , κ1n = 1
W

[
2nπ + 2 tg−1

(
β1n

κ1n

)]
.

For the odd symmetric solution, we have

ϕ1n(y) =




f2 sin(κ1n y), y ∈ [−W/2, W/2],

g1 exp

[
−β1n

(
y +

W

2

)]
, y ∈ [W/2,∞],

−g1 exp

[
β1n

(
y − W

2

)]
, y ∈ [−∞,−W/2],

with f2 = √
2
[
W − sin(κ1nW )

κ1n
+ 2 sin2(κ1nW/2)

β1n

]− 1
2 , g1 = − f2 sin(κ1n W/2)eβ1n W , κ1n =

1
W

[
(2n − 1)π + 2 tg−1

(
β1n

κ1n

)]
. Through the standard manipulations of trigonometrical function

algebra, φ1n(y) in the AOS region can be unified as a single cosine function, as shown in the
text.

We now study the case of the radiation modes and assume that the formal solution for
equation (A.2) is

E1g(x, y) =
{

[u1 cos(β1n y) + v1 sin(β1n y)]eiτ x , y ∈ [W/2,∞],
[u2 cos(β1n y) + v2 sin(β1n y)]eiτ x, y ∈ [−∞,−W/2].

After imposing the boundary conditions, we obtain the corresponding solutions. When the
field distribution possesses even symmetry (u1 = u2, v1 = −v2), the corresponding solution
is

ϕ1n(y) =




f1 cos(κ1n y), y ∈ [−W/2, W/2],

u1 cos(β1n y) + v1 sin(β1n y), y ∈ [W/2,∞],

u1 cos(β1n y) − v1 sin(β1n y), y ∈ [−∞,−W/2],
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where

u1 =
(

f1

β1n

)[
β1n cos

(
κ1nW

2

)
cos

(
β1nW

2

)
+ κ1n sin

(
κ1nW

2

)
sin

(
β1n W

2

)]
,

v1 =
(

f2

β1n

)[
β1n cos

(
κ1n W

2

)
sin

(
β1nW

2

)
− κ1n sin

(
κ1nW

2

)
cos

(
β1nW

2

)]
,

and κ1n and β1n satisfy the equation

tg

(
κ1n W

2

)
=

(
β1n

κ1n

)
u1 sin

(
β1n W

2

) − v1 cos
(

β1n W
2

)
u1 cos

(
β1n W

2

)
+ v1 sin

(
β1n W

2

) .

When the field distribution possesses odd symmetry (u1 = −u2, v1 = v2), the
corresponding solution is

ϕ1n(y) =




f2 sin(κ1n y), y ∈ [−W/2, W/2],

u1 cos(β1n y) + v1 sin(β1n y), y ∈ [W/2,∞],

−u1 cos(β1n y) + v1 sin(β1n y), y ∈ [−∞,−W/2],

where

u1 =
(

f2

β1n

)[
β1n sin

(
κ1n W

2

)
cos

(
β1n W

2

)
− κ1n cos

(
κ1nW

2

)
sin

(
β1n W

2

)]
,

v1 =
(

f2

β1n

)[
β1n sin

(
κ1nW

2

)
sin

(
β1n W

2

)
+ κ1n cos

(
κ1nW

2

)
cos

(
β1nW

2

)]
,

κ1n and β1n satisfy the equation

ctg

(
κ1n W

2

)
= −

(
β1n

κ1n

)
u1 sin

(
β1n W

2

) − v1 cos
(

β1n W
2

)
u1 cos

(
β1n W

2

)
+ v1 sin

(
β1n W

2

) .

We learn from the numerical analysis that the values of β1n and κ1n are discrete for the guide
modes. The total number of guide modes, which are determined by equation (A.4a), is finite.
κ1n is increased with the increase in the mode index n. However, β1n is decreased. For the
radiation modes, the values of β1n and κ1n are continuous. Therefore, only part of the FW’s
energy can be converted to the SHG. Consequently, the corresponding conversion efficiency
is quite low.
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